Infiltrability Reduction of Artificial Recharge of Groundwater System in a Desert in the Absence of Sowbugs

Gholamreza RahbarA, Ataollah KavianB, Mahmood Habibnezhad RooshanC, Ahang KowsarD, Kaka ShahediE

A Ph.D. Candidate of Science and Watershed Management Engineering, Faculty of Natural Resources, Sari Agriculture Science and Natural Resources University. (Corresponding Author), E-mail: gholamreza.rahbar@gmail.com
B,E Associate Professor, Faculty of Natural Resources, Sari Agriculture Science and Natural Resources University
C Professor, Faculty of Natural Resources, Sari Agriculture Science and Natural Resources University
D Professor, Fars Research Centre for Agriculture and Natural Resources

Received on: 15/01/2016
Accepted on: 16/04/2016

Abstract. Floodwater spreading for the artificial recharge of groundwater (ARG) is a logical alternative to build large dams for water resources management in dry environments so that it not only enhances water security, but also reclaims the degraded land due to the settlement of suspended load on the spreaders. However, translocation of very fine clay minerals existing in floodwater decreases the infiltration capacity of sedimentation basins (SB) and recharge ponds which eventually terminate their useful life. Although root channels facilitate infiltration and particularly percolation, crust formation substantially decreases the infiltration rate. As the role of a sowbug (Hemilepistus shirazi Schuttz) in enhancing the infiltrability has been previously reported, its absence had to be assessed too. Thus, the main objective of this research was to monitor the infiltration rate (IR) changes in the research plots devoid of the sowbug burrows in 3 SBs out of 6 ones in the Bisheh Zard1 ARG system in Gareh Bygone Plain (GBP) located in the southeast of Fars province applying the double ring method at constant hydraulic head during a 15 year operation. Each of those SBs was divided into three equal sections. One raised part in each section which had not been covered by floodwater was selected as the control. Results indicated that infiltrability after 15 years had decreased from 10.33 cm/h to 2.16, 2.49 and 7.47 cm/h in the first, second and third SBs, respectively. The largest decrease in infiltrability occurred in the upstream SB and the lowest one in the downstream SB. The volume of floodwater received by each SB and therefore, the volume of the settled suspended load depend on its location, the flow rate and duration of flooding. The ARG systems in the GBP are still functioning satisfactorily since 1983.

Key words: Desertification, Infiltration, Floodwater spreading, Gareh Bygone
Introduction

Water is one of the scarcest natural resources in the Gareh Bygone Plain (GBP) in southern Iran. Therefore, it should be considered as a highly precious commodity. Deficiency of surface water in the Fasa Basin where the GBP is located and the accelerating rate of water table decline in that region which in some localities is followed by salinization of groundwater have prompted the water–related authorities to proclaim the Fasa Basin as a prohibited area implying that the required permits for digging or drilling new wells would not be issued, and deepening of the existing wells or extension of the qanats are allowed only under special circumstances (Kowsar, 1991).

Desertification control through floodwater spreading (FWS) for the artificial recharge of groundwater (ARG) is a logical action that not only replenishes the groundwater reservoirs, but also reclaims the degraded land due to the deposition of suspended load on them (Kowsar 1998, 2005). The ARG through FWS in the GBP has improved its environmental conditions as evidenced by the return of many flora and fauna to once a dilapidated desert (Mohammadnia and Kowsar, 2003). This process decreases both infiltration rate (IR) and hydraulic conductivity of spreaders. A study at the Kabudar Ahang Station, Hamadan indicated that the mean IR had decreased from 2.25 cm/h to 1.9 cm/h (Charkhabi and Amiri, 2003; Khalafi et al., 2007). Boroomand Nasab et al. (2004) have reported the same results from Moosian. IR of a FWS system in Qusheh, Damghan has decreased by 9.6 fold (Shariati, 2001).

The main reason for the reduced IR of the SBs in an ARG research station in Booshehr has been the formation of a thick layer of deposits consisting of fine clays and gypsum (Jafari and Tavakoli Rad, 2014). Zaremehrjardi et al. (2013) and Rajaie et al. (2013) have reported that the IR had decreased from 5.22 cm/h in the control plots to 2.32 cm/h in the SBs in the Sarchahan Aquifer Management Research Station in Hormozgan. They stated that the change in surface permeability reduction varied according to the flooding event conditions. Esfandiari and Rahbar (2004) have also reported the same outcome for the Dorz-Sayehban ARG systems.

Infiltration of water into a soil is an important factor affecting the efficiency of irrigation and drainage systems while optimizing the availability of water for plants, improving the yield of crops and minimizing the erosion. The double ring infiltrometer is a simple instrument used to determine the IR of water into a soil (Arriaga et al., 2010). As vertically
infiltrated water runs away to the sides, the outer ring of the infiltrometer serves as a device to mitigate this process. Measurements take place exclusively in the inner ring through which the water virtually runs vertical (Tricker, 1978). Many factors such as texture, structure, initial moisture content, water head, water temperature, amount and type of suspended load, concentration of soluble salt, distance to water table and presence of hard pans control IR (Bouwer, 1986).

Contemplating different rates of infiltrability reduction in various geological and climatological zones of Iran, a preliminary conclusion might be drawn: components of geological formations whose long term erosion has contributed to land formation on the plains decide the physico-chemical characteristic of soil used today to spread floodwater on. In this study, we have assessed the changes of infiltration rate in 3 SBs of a FWS system in the Gareh Bygone plain, Iran after a 28 year operation.

Materials and Methods

Study area

The research site is in GBP, a 6000 ha sandy desert in southern Iran, lies between 28° 35’ and 28° 41’ N latitude and 53° 55’ and 53° 57’ E longitude on a debris cone, and 1116 – 1160 m above sea level. This plain is located 50 km to the southeast of Fasa, and 200 km from Shiraz. There are 4 villages in the plain including Ahmad Abad, Rahim Abad, Bisheh Zard and Tchah Dowlat (Fig. 1).

The mean annual precipitation and mean annual A-pan evaporation of the plain are 243 and 2860 mm, respectively (Kowsar and Pakparvar, 2004). The mean annual temperature is 19°C and absolute minimum and maximum temperatures are –7 (Feb.) and 43°C (July), respectively. Hot and dry winds which usually blow from the southwest during late spring and summer raise the temperature to around 50°C in the shade (Kowsar 1998, 2005).
Phillips (1957), Newman (1963) and Quilty (1972) with some modification (Kowsar, 2016).

This study which was implemented to assess some measurable changes in infiltration rate and had occurred during the 1983-98 period was conducted in the BZ1 ARG system. This system, which covers 198 ha area, consists of 5 SBs and a recharge pond. The first 3 SBs which had received floodwater in most events were divided into three equal sections. One raised part in each section which had not been covered by floodwater was selected as the control. Some physico-chemical properties of surface in the sedimentation basins were determined (Table 1) in order to find some relationships between them and infiltrability results. Infiltrability of 3 paired plots was determined with 3 replicates (three separate years) utilizing the double ring method (Anon, 1990; Teh and Talib, 2006). Data were analyzed using Statistical Analysis System Package (SAS). Data distribution was tested applying the Kolmogrov-Smirnov test. The significant difference between treatment means was examined using the Duncan test at p< 0.01.

Results and Discussion

Infiltrability results are presented in Table 2 and Figs. 3 to 5. They indicated that infiltration rate (IR) in the first SB in 1998 (time1) had decreased from 10.31 cm/h to 2.16 cm/h; for the second and third SBs, they were 2.49 and 7.47 cm/h for the same year, respectively. The results indicated that IR of the SBs during these periods had decreased significantly as compared with the control (p<0.01). Figs. 3, 4 and 5 are the graphical presentation of the same results. There is also a significant difference between the 3SBs as well (p<0.01) (Table 2).

Table 2. Infiltration rate changes in the sedimentation basins in different years.

<table>
<thead>
<tr>
<th>event</th>
<th>SB 3</th>
<th>SB 2</th>
<th>SB 1</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.44 <sup>b</sup> ± 1.13</td>
<td>2.49 <sup>c</sup> ± 0.15</td>
<td>2.16 <sup>c</sup> ± 1.01</td>
<td>10.31 <sup>a</sup> ± 1.24</td>
</tr>
<tr>
<td>2</td>
<td>3.27 <sup>b</sup> ± 1.24</td>
<td>1.57 <sup>b</sup> ± 0.86</td>
<td>1.91 <sup>b</sup> ± 1.25</td>
<td>5.65 <sup>a</sup> ± 3.41</td>
</tr>
<tr>
<td>3</td>
<td>3.85 <sup>b</sup> ± 0.88</td>
<td>2.67 <sup>b</sup> ± 1.55</td>
<td>1.50 <sup>c</sup> ± 1.21</td>
<td>6.59 <sup>a</sup> ± 1.10</td>
</tr>
</tbody>
</table>

Mean ±SD in row followed by common letters are not significantly different by Duncan test, p≤0.01.
Decreasing soil infiltration rate in Sedimentation Basins (SB) 1 and 2 is more than that of SB3 because the amount and thickness of layer sedimentation are more and infiltration decrease in Plot 3 is very low. The largest decrease in the IR occurred in the upstream basin (SB3) and the lowest in the downstream basin (SB1).

The volume of floodwater received by each SB, and the volume of settled suspended load depend on its location, flow rate and duration of flooding. Physico-chemical properties of soil showed that the content of clay and silt increased in comparison with control which was significant at 99% level (Table 1).

Eroding geological formations in Fars, Iran have formed the runoff producing watersheds that yield extraordinary volumes of suspended load. Deposition of very fine clay minerals such as chlorite, palygorskite and smectite in the suspended load in the SBs and recharge ponds decreases their permeability to the point that ends their useful life. Although the root channels increase percolation in the subsoil, crust formation decreases the infiltration rate substantially.

Extending the economic life of artificial recharge of groundwater systems is a challenge to the planners and implementers of these facilities. The nature has fortunately come to the help of ARG system in the GBP. Appearance of a sowbug (*Hemilepistus shirazi* Schuttz) by 1993 has extended the useful life of those systems. Apparently, those systems will function indefinitely. We foresee the need for raising the head of water in the Bisheh Zard River every 19 to 20 years.
Table 1. Some of the mean physico-chemical properties of surface soil in the sedimentation basins

<table>
<thead>
<tr>
<th>Soil properties</th>
<th>Sedimentation basin 1</th>
<th>Sedimentation basin 2</th>
<th>Sedimentation basin 3</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand (%)</td>
<td>51.16 c</td>
<td>53.16 c</td>
<td>70.00 b</td>
<td>89.65 a</td>
</tr>
<tr>
<td>Silt (%)</td>
<td>32.44 a</td>
<td>32.44 a</td>
<td>16.61 b</td>
<td>7.51 c</td>
</tr>
<tr>
<td>Clay (%)</td>
<td>16.40 ab</td>
<td>14.38 a</td>
<td>13.38 a</td>
<td>2.83 b</td>
</tr>
<tr>
<td>SP (%)</td>
<td>45.10 a</td>
<td>51.42 a</td>
<td>45.95 a</td>
<td>23.83 b</td>
</tr>
<tr>
<td>pH</td>
<td>7.65 b</td>
<td>7.56 bc</td>
<td>7.41 c</td>
<td>8.12 a</td>
</tr>
<tr>
<td>EC (ds/m)</td>
<td>0.71 ab</td>
<td>1.01 a</td>
<td>0.095 a</td>
<td>0.37 b</td>
</tr>
<tr>
<td>CaCO₃ (%)</td>
<td>42.75 ab</td>
<td>39.17 b</td>
<td>33.93 c</td>
<td>44.86 a</td>
</tr>
<tr>
<td>O.C. (%)</td>
<td>0.71 a</td>
<td>0.55 b</td>
<td>0.45 h</td>
<td>0.26 b</td>
</tr>
<tr>
<td>CEC (meq/100 g)</td>
<td>6.40 a</td>
<td>5.60 b</td>
<td>4.30 c</td>
<td>3.96 d</td>
</tr>
</tbody>
</table>

Mean in rows followed by common letters are not significantly different by the Duncan test, p≤0.01.

Conclusions

It is obvious that the deposition of suspended load present in turbid floodwater in soil pores clogs them, and mitigates their function in infiltrability and hydraulic conductivity. However, many factors involving biopores and root channels enhance these properties. As it had been previously reported on the remarkable function of a sowbug (Hemilepistus shirazi Schuttz) in enhancing those properties, this study was performed to assess the performance of an ARG system devoid of them. This study revealed that although there had been a decreasing trend in infiltrability of the sedimentation basins, they were working properly commensurate with the flow rate of diverted floodwater. The largest decrease in infiltrability occurred in the upstream SB and the lowest one in the downstream SB. The volume of floodwater received by each SB, and therefore, the volume of the settled suspended load depend on its location, the flow rate and duration of flooding. The first SB receives the flow in every flooding event; however, the downstream SBs might not be inundated in low and short duration flows. The mean infiltration rate of the first 3 basins after 15 years of operation was 4.0 cm/h; for the 198 ha BZ₁ ARG system, the amount was 22m³/s. The original capacity of inundation canal had been designed at 5m³/s; however, some 20 m³/s entered the system in the deluge of 3rd December, 1986 proving that it could handle that flow rate. Although a decrease from the original infiltration rate of 10.33 cm/h to 2.13 cm/h in the first SB was substantial, it proved that the system could have performed satisfactorily after 28 years of floodwater spreading even in the absence of the sowbugs. It is important to realize that the ARG systems in the GBP are still functioning satisfactorily since 1983. However, flood also carries large amounts of fertile nutrients and can improve the productivity of soil and can also modify the physical properties of soil as reported by Rahbar (2008), Funseca (2003) and Hirst and Ibrahim (1996).

Literature Cited

Funseca, R. M., 2003. Dam Reservoir sediment as fertilizer and artificial soil, Case study from Portugal and Brazil. Proceedings of International Symposium Kanazava University.

کاهش نفوذپذیری سامانه‌های تغذیه مصنوعی آب‌های زیرزمینی در یک منطقه بیابانی بدون حضور خرخاکی (مطالعه موردی: دشت گربایگان)

غلامرضا رهبر، عطاء الله کاویان، محمود حبیب نژاد روشن، آهنگ کوثر، کاکا شاهدی

دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری (نگارنده مسئول)، پست الکترونیک: gholamreza.rahbar@gmail.com

استاد گروه علوم و مهندسی آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری

استاد پژوهش بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات کشاورزی و منابع طبیعی فارس

واژگان کلیدی: بیابان‌زایی، پخش سیلاب، نفوذپذیری، گربایگان فسا

چکیده. پخش سیلاب به منظور تغذیه مصنوعی آبخوان دهانه‌ای اقدامی منطقی است که نه تنها مخازن زیرزمینی، بلکه برخی زمین‌های به شدت تخریب شده به علت وجود مواد معلق در سیلاب، را نیز احیاء می‌کند. درات رس و مواد معلق موجود در سیلاب سبب کاهش ظرفیت نفوذپذیری خاک در استخرهای تغذیه شیب‌های پخش سیلاب می‌شود. تشکیل سل و انرژی سخت که به واسطه رسوبات و ذرات ریز همچون پالیگورسی قسمت شیب‌های پخش سیلاب را کوتاه می‌سازد. اگرچه ریشه راه‌های ایجاد شده اکلیتاکس به تراوایی رسوبگیرها و استخرهای تغذیه می‌افزاید، در عین حال تراوایی آنها به علت سل سیلاب ایجاد شده، کاهش می‌یابد. هدف اصلی پژوهش حاضر تغییرات نفوذپذیری خاک در شیب‌های پخش سیلاب گربایگان فسا در جنوب شرقی استان فارس می‌باشد. در یکی از شیب‌های پخش سیل گربایگان فسا موسوم به بیشه زرد یک، با کاربرد روش استوانه‌های دوگانه (Double Ring) اقدام به ازمایش نفوذپذیری گردید. هر نوار پخش سیلاب به سه قسمت مساوی تقسیم شد و در هر قسمت (با و بدون پخش سیلاب) سه آزمایش نفوذپذیری و جمعاً 9 آزمایش در هر نوار تعداد گرفت. نتایج نشان داد که میزان نفوذپذیری خاک در اولین نوار پخش سیلاب بیشتر زرد شماره یک 33/3٪ سانتی متر بر ساعت به 32٠/ 4 و در نوار دوم و سوم به ترتیب به 36/ 47 و 7/ 66 سانتی متر بر ساعت رسید. نتایج حاکی از آن است که بیشترین کاهش نفوذپذیری در استخرهای تغذیه با دست و کمترین کاهش در استخرهای تغذیه به پایین دست به وقوع پیوسته است. حجم سیلاب دریافت شده و در نتیجه حجم پر عمق بستگی به محل و حجم سیلاب و مدت زمان آن دارد. با این وجود عملکرد سامانه‌های پخش سیلاب به منظور تغذیه مصنوعی آبخوان فسا درشت گربایگان فسا از سال 1392 کاملاً رضایت بخش و کارآمد می‌باشد.