مدل ریاضی سه بعدی در حل تحلیلی معادله تحمیک در خاک
اشباع همگن

رضا پورسکی*، جواد احديان* و منصور سراج**
*گروه سازه‌های آبی، دانشگاه شهید جهرم اهواز
**گروه ریاضی، دانشگاه شهید جهرم اهواز

تاریخ دریافت: 1397/2/26
تاریخ پذیرش: 1398/4/16

چکیده: در مواردی که تبخیر به تسریع در نسبت تحمیکی ناشی، طول مسیر زهکشی می‌تواند به‌وسیله
زهکش‌های عمومی کاهش یابد و جریان به‌صورت شعاعی و قائم زهکشی شود، از اینجاکه معادله تحمیک
در سه بعد، یک معادله‌ای پیچیده‌ریاضی است، در این تحقیق معادله‌ی سه‌بعدی سرعت زمانی تحمیک
در مختصات استوانه‌ای با شرایط مرزی مربوط به تحمیک حاضر، مورد استفاده قرار گرفته که، MATLAB
حل تحلیلی معادله‌ای بدست‌آرده و در حل معادله، تحلیل تناوبی با استفاده از نرم‌افزار
انجام شد و تغییرات درصدی نسبت به زمان بررسی شد و با نتایج حاصل از روشن شکل
به‌دید و روش‌های استفاده شده توسط مقایسه شد. نتایج نشان داد که روش
تحلیلی مورد استفاده‌ای در این تحقیق، در تطبیق با روش‌های عادی به کار گرفته شده از تحقیقات گذشته
است.

واژه‌های کلیدی: تحمیک سه بعدی، مختصات استوانه‌ای، شرایط مرزی، زهکشی شعاعی-عمودی.

رده‌بندی ریاضی (2010): 223B02, 248XX.

1- مقدمه

تحمیک به‌عنوان یک موضوع مهم در مهندسی خاک، فرآیند وابسته به زمان نشست‌های
رس اشباع زیر سطح آب زیرزمینی است که در اثر مستقل کردن فشار آب اضافی ایجاد شده
برای اعمال بار بر روی بی. ایجاد می‌شود. ترزاکی (1925) اولین نظریه را که در آن سرعت
تحمیک به‌عنوان خاک‌های رس اشباع در نظر گرفته شده بود، ارائه نمود. تحلیل معادله‌ی

r-poursaki@mscestu.scu.ac.ir: آدرس الکترونیکی نویسنده مسئول مقاله.
یک بعدی ترزاقی بر اساس فرضیه‌های زیادی صورت گرفته است که از آن جمله می‌توان به همگن بودن سیستم رسانا-آب، اشابی کامل بودن خاک، عدم تراکم‌پذیری آب، حرکت آب در راستای فشارگذی آن، معاینه بودن قانون دامرس و عدم تراکم‌پذیری ذرات خاک، اشاره نمود. در بسیاری از موارد، پهناوری جاذبه‌های زمین نسبت به ایجاد فشارهای زمین تأثیر غیر معمولی دارد.

برای تخمین سطح آب و کاهش فشار منفی اساس می‌شود که از اطلاعات زمین‌شناسی به فاصله دوری‌های زمین استفاده شود. برای ارائه نواحی انقلاب صورت می‌پذیرد، و محدوده معمول ترزاقی چنین ناسیب برای پاسخ به نیازهای طرح نخواهد پیدا کرد. امکان بهینه‌سازی ترزاقی در شرایطی است که در محدوده طرح نخواهد پیدا کرد. امکان بهینه‌سازی ترزاقی در شرایطی است که در محدوده طرح نخواهد پیدا کرد.
روش برای حل معادله‌ی تحقیم در خاک‌های غیراسباب از دقت کافی برخوردار است. پی و همکاران [۱۰] مطالعه‌ای بر روی رژ نرم انجام دادند و در این فشان آب منفی مایع به روشی
نمونه‌برداری که از روش‌های محدود استفاده نمودند. اینگونه و در [۱۱] با فرض این که نفوذ‌پذیری
و تراکم‌پذیری خاک در حین عمل تحقیم متغیر است و با داشته باشند، گرفتن نتایج تغییر خاک نسبت به مقدار تحقیق برای معادله‌ی تحقیم در خاک‌های ایرانی دادند و نتیجه‌گیری گرفتند که ضریب تحقیم در طول عمل تحقیم متغیر می‌باشد. این به ترتیب که
گرفتن افزایش تحقیم به صورت انتخابی در یک یا چند سطحی معادله‌ی تحقیم را به صورت تحلیلی حل نموده و نتایج گرفتن که سرعت زمانی تحقیم در یک یا چند سطحی با سختی خاک نفوذ‌پذیری کمتر از سرعت زمانی تحقیم در همان یا چند سطحی خاک داده‌ای می‌باشد. تائید و
همکاران [۱۲] را همی‌راه برای تحقیم خاک سالی به در نظر داشتند. فشار آب
حقایقی در این‌جاه تعابیر خاک‌بریزی به صورت قابل قبول و تغییر به فشار آب حفره‌ای اند. -
گری شده محاسبه شد. توانای [۱۳] تحقیق معادلات شعاعی و عمودی تحقیم به صورت مجزا
موردربرسی قرار داد. و بر اساس روش مبتنی بر اشکال کارایی [۱۴] حل تحلیلی معادلات شعاعی و
عمودی تحقیم را چاگدانه انجام داد و دستایی نتیجه‌گیری نمود که لازم است فشار اصل
برهم‌په جواب‌های معادلات شعاعی و عمودی به صورت ساده‌تر می‌توانند مورد استفاده قرار
گیرد. بر اساس آنچه در مورد بر منابع گذشت، مشخص می‌شد که روش‌های نسبی در
نتشتن تحقیمی به صورت تحلیلی کمتر مورد نظر واقعیت آن‌ها به نظر می‌رسید. این در تحقیق حاضر، حل
تحقیلی معادله به سببی تحقیم در شرایط زهکشی شعاعی کلید مورد نظر قرار گرفته است. از
طریقی در تحقیقات گذاشته می‌باشد حل تحلیلی به صورت مجزا برای چرب‌های شعاعی و عمودی
صویر می‌پذیرفت و با استفاده از اصل برهمپه جواب‌های حاصل شده است. حال آن‌که در
تحقیق حاضر حل تومانی و یکی‌گان معادله به سببی تحقیم مانند است.

۲- تحلیل سببی معادله ترزاکی

با استدلالی مشابه با روش ترزاکی برای استخراج معادله نگن‌بدی تحقیم، معادله‌ی سببی تحقیم به دست خواهد آمد. معادله بیلان آب در خاک به صورت زیر به کار می‌رود [۱۶]:

\[
\text{میزان تغییر حجم = میزان آب ورودی - میزان آب خروجی}
\]

بتایانین می‌توان معادله بیلان آب در سد بعد به صورت زیر نوشت:

\[
\text{میزان تغییر حجم = میزان آب ورودی - میزان آب خروجی}
\]
\[
\left(v_x + \frac{\partial v_x}{\partial x} \right) dy dx - v_x dy dz + \left(v_y + \frac{\partial v_y}{\partial y} \right) dx dy - v_y dx dz + \frac{\partial v_z}{\partial z} dx dy - v_z dx dy = \frac{\partial V}{\partial t}
\]

(1)

\[
\frac{\partial v_x}{\partial x} dx dy dz + \frac{\partial v_y}{\partial y} dx dy dz + \frac{\partial v_z}{\partial z} dx dy dz = \frac{\partial V}{\partial t}.
\]

(2)

با استفاده از قانون دارسی و با فرض این که دو فیزیک‌نارنجی خاک در هم‌های جهت یکسان باشند، معادله فوق را می‌توان به صورت زیر نوشت:

\[
\frac{k}{\gamma_w} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = \frac{1}{g} \frac{\partial V}{\partial t}.
\]

(3)

در زمان تحقیق، سرعت تغییر حجم امان خاک برای سرعت تغییر حجم فضاهای خالی است.

\[
\frac{\partial V}{\partial t} = \frac{\partial (V_x + V_z)}{\partial t} = \frac{\partial V_x}{\partial t} + V_z \frac{\partial e}{\partial t} + e \frac{\partial V_z}{\partial t}
\]

(4)

که درآن، حجم بخش جامد خاک و حجم فضاهای خالی خاک می‌باشد. مقدار تغییرات کل حجم بر حسب زمان با تغییرات نسبت پوکی برای می‌باشد، زیرا فرض بر این است که میزان تغییرات حجم ذرات جامد خاک نسبت به زمان صفر است. (0). از طرفی بر اساس روابط وزنی-حمیج در خاک می‌توان نسبت پوکی جامد و حجم کل، رابطه می‌باشد. از این روابط معادله

\[
V = dx dy dz
\]

(5)

(5) به شکل زیر با نوشتی می‌شه:

\[
-\frac{k}{\gamma_w} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = \frac{1}{1+e_s} \frac{\partial e}{\partial t}
\]

(6)

با توجه به این که تغییرات نسبت پوکی در ضریب افزایش تنش مؤثر و کاهش فشار آب منفی به وقوع می‌پیوندد، می‌توان با استفاده از یک رابطه خطی و ضریبی به نام ضریب فشردگی، _λ_، بین آن‌ها رابطه زیر را پیکار نمود:
\[\partial e = a_v \partial (\Delta \sigma^v) = -a_v \partial u \]

با جایگزینی رابطه (6) در معادله (5)، معادله دیفرانسیل سرعت تحکیم به دست می‌آید:

\[-\frac{k}{\gamma_w} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = -\frac{a_v}{1+e_v} \frac{\partial u}{\partial t} = -m_v \frac{\partial u}{\partial t} \]

که ضریب تراکم‌پذیری حجمی خاک می‌باشد و از رابطه \(m_v \) به دست می‌آید.

\[\frac{\partial u}{\partial t} = C \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \]

که در آن \(C \) ضریب تحکیم می‌باشد و از رابطه \(\frac{k}{\gamma_w m_v} \) به دست می‌آید. همانطور که چنین گویی شده، در این تحقیق هدف حل تحلیل معادله ترازاقی در شرایطی است که جریان با عبور شناور و عمودی زهکش می‌شود. با توجه به نوع جریان، معادله معمول ترازاقی در دو بعد تحت تأثیر زهکش‌های عمودی و تبدیل عملگر مختصات دکارتی به مختصات استوانهای با صرف‌نظر از جریان محيطی به صورت زیر خواهد بود:

\[\frac{\partial u}{\partial t} = C \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} \right) \]

\[\begin{align*}
 u(r, z, t) &= u(r, \gamma H_d, t) = 0 \quad \forall \quad 0 \leq z \leq \gamma H_d \\
 u(r_d, z, t) &= 0 \quad \forall \quad r_d \leq r \leq R_e \\
 \left. \frac{\partial u}{\partial r} \right|_{r=R_e} &= 0 \quad \forall \quad r_d \leq r \leq R_e \\
 u(r, z, t) &= q = u_0 \quad \forall \quad t \geq 0
\end{align*} \]

در معادله (9) پارامتر \(q \) فشار آب منفی‌تر اضافی، سریار اعمال شده بر روی نمونه خاک است، \(u \) فشار آب منفی‌تر اضافی، سریار اعمال شده بر روی نمونه خاک است. در معادله به دلیل تقارن، می‌توان از توزیع فشار جریان محيطی صرف‌نظر نمود که برحسب مکانیسم حرکت جریان، فرض صحیح است.
شکل 1: نمونه خاک تحت زهکشی شیمی و قائم

2-1 حل معادله

شرايط مرزي قابل تعميم در اين معادله بر اساس شرايط فيزيكي مسئله از نوع دريکله و نيومن
خواهد بود كه موجب پيچیدگي در حل معادله خواهد شد. اين معادله يک مسئله اشتروم
ليوويل منفرد بر حسب \(r \) با تابع ورني \(W(r) = r \) است كه مولد سري فوريه يبيل مي باشد و
همچنين يک مسئله اشتروم ليوويل عادي بر حسب \(z \) با تابع ورني \(W(z) \) است كه مولد
سري فوريه سيتوسي مي باشد. معادله فوق را با روش تفكيك پذيري مي توان بهصورت تحليلي
 حل نمود. روش تفكيك پذيري مفتوح با معادله (10) نوشته ميشود [17]:

\[
u(r, z, t) = F(r, z) G(t)
\]

(10)

\[
\frac{1}{C} \frac{G'(t)}{G(t)} = \frac{1}{F} (F'' + \frac{1}{r} F' + F_{zz}) = -\gamma'
\]

(11)

كه بر اساس معادله (11) جواب زمانی معادله بهصورت معادله (12) به دست مي آيد:

\[
G(t) = e^{-\gamma' t}
\]

(12)

براي يکش مكاني مي توان معادله را بهصورت زير نوشت:

\[
F'' + \frac{1}{r} F' + F_{zz} + \gamma' F = 0
\]

(13)
معادله فوق، معادله هلمولتز در مختصات استوانهای است که می‌توان به روش تفکیک‌دیفرانسیل آن را حل نمود.

\[F(r, z) = R(r)Z(z) \] \hspace{1cm} (14)

\[\frac{R''(r)}{R(r)} + \frac{1}{r} \frac{R'(r)}{R(r)} = -\left(\frac{Z''(z)}{Z(z)} + \gamma^2 \right) = -\lambda^2 \] \hspace{1cm} (15)

\[r^2 R''(r) + r R'(r) + \lambda^2 r^2 R(r) = 0. \] \hspace{1cm} (16)

معادله (16)، معادله دیفرانسیل بسل از مرتبه صفر است. جواب‌های این معادله به توابع بسل از مرتبه صفر معروف هستند. تاکنون نقطه ۰ = ۰ نقطه مربوط به معادله است، این معادله یک مسئله اشتروم لیوویل منفرد بر حسب ۰ می‌باشد. با توجه به شرایط مرزی موجود در مسئله، معادله‌ی (16) بر حسب ۰ به صورت زیر می‌شود:

\[R(r) = a \left(J_1(\lambda r) - \frac{J_1(\lambda R)}{Y_1(\lambda R)} Y_1(\lambda r) \right) \] \hspace{1cm} (17)

که در این رابطه \(a \) ثابت غیر صفر معادله، \(\lambda \) ثابت و \(J_1 \) و \(Y_1 \) جداولی معادله، \(J_1 \) و \(Y_1 \) هم به ترتیب توابع بسل نوع اول و نوع دوم از مرتبه صفر و ۱ می‌باشند. معادله‌ی (17) را می‌توان به صورت خلاصه‌ای (با محدودیت (18)) نوشت:

\[R(r) = a \mu_1(\lambda_n r) \] \hspace{1cm} (18)

\[\mu_1(\lambda_n r) = J_0(\lambda_n r) - \frac{J_1(\lambda_n R)}{Y_1(\lambda_n R)} Y_0(\lambda_n r) \] \hspace{1cm} (19)

با توجه به شرایط مرزی موجود در مسئله می‌توان نوشت:

\[\mu_1(\lambda_n r_a) = J_1(\lambda_n R_a) - \frac{J_1(\lambda_n R)}{Y_1(\lambda_n R)} Y_1(\lambda_n r_a) = 0 \] \hspace{1cm} (20)

با استفاده از نرم‌افزار MATLAB (محاسبه‌ی شده‌اند.)

\[Z'(z) + (\gamma^2 - \lambda^2)Z(z) = 0 \] \hspace{1cm} (21)
معادله‌ی (21) یک مسئلهٔ اشتورم-لیوولیت ساده بر حسب \(Z \) است که با توجه به شرایط مرزی

\[
\beta' = \gamma' - \lambda' \\
Z(z) = b \sin(\beta z) \\
\beta_m = \frac{m\pi}{rH_{dr}}. \tag{24}
\]

با جایگذاری روابط (22), (23) و (24) در رابطه (20) و ترکیب خطی بین نهایت جواب مستقل

خطی، می‌توان جواب کلی معادله (8) را به صورت زیر نوشت:

\[
u(r, z, t) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{mn} \mu_n(\lambda_n r) \sin \left(\frac{m\pi z}{rH_{dr}} \right) e^{-\gamma t}. \tag{25}
\]

مقدار با استفاده از خواص یکه و شرط اولیه موجود در معادله (8) از رابطه زیر به دست می‌آید [17]:

\[
a_{mn} = \frac{\int_r^{r_d} \int_0^R q \mu_n(\lambda_n r) \sin \left(\frac{m\pi z}{rH_{dr}} \right) dr dz}{\int_r^{r_d} \int_0^R \mu_n(\lambda_n r) \sin \left(\frac{m\pi z}{rH_{dr}} \right) dr dz}. \tag{26}
\]

که پس از انتگرال‌گیری و خلاصه‌سازی مقدار آن برای است به:

\[
a_{mn} = \frac{\xi q}{M \lambda_n r_d(\lambda_n r_d)} \frac{r_d \mu_n(\lambda_n r_d)}{r_d \mu_n(\lambda_n r_d) - r_d \mu_n(\lambda_n r_d) - R_v \mu_n(\lambda_n R_v)} \\
m = \gamma m' - 1 \tag{27}
\]

\[
M = (\gamma m' - 1) \frac{\pi}{\gamma} \tag{28}
\]

\[
\gamma' = \beta' + \lambda' \tag{29}
\]

\[
\gamma_m = \frac{M}{H_{dr}}. \tag{30}
\]

\(r_d \leq r \leq R_v \) پس از جایگذاری مقدار فوق در معادله (25)، تابع \(u(r, z, t) \) به آن‌‌از \(0 \leq z \leq 2H_{dr} \) به صورت زیر استخراج می‌شود:
درجه تحکیم در هر شعاع و در هر زمان با استفاده از رابطه زیر محاسبه می‌شود:

\[u_{r,z} = 1 - \frac{u}{q} \]

\[u_{r,z} = 1 - \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{r_q \mu_m(\lambda_n R_c) - R_m \mu_n(\lambda_n R_c)}{M \lambda_n r_q \mu_m(\lambda_n r_q) - R_m \mu_n(\lambda_n R_c)} \sin \left(\frac{M \zeta}{H \omega} \right) e^{-C \gamma t} \]

و درجه متوسط تحکیم برای کل لایه خاک که هم بهصورت قائم و هم بهصورت شعاعی زهکشی می‌شود، از رابطه زیر به دست می‌آید:

\[U = \frac{1}{V} \int u_{r,z} dV = \frac{\int_{r_q}^{R_q} \int_{r}^{R} u_{r,z} r \pi r dr dz}{\int_{r_q}^{R_q} \int_{r}^{R} r \pi r dr dz} \]

\[U = 1 - \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{r_q \mu_m(\lambda_n R_c) - R_m \mu_n(\lambda_n R_c)}{M \lambda_n r_q \mu_m(\lambda_n r_q) - R_m \mu_n(\lambda_n R_c)} e^{-C \gamma t}. \]

در حالت قبل، معادله دیفرانسیل سرعت زمانی تحکیم در شرایطی که هدایت هیدرولوژیکی خاک در همه چهار چاه‌های یکسان باشد، مورد تحلیل و بررسی قرار گرفته. اگر هداکت هیدرولوژیکی خاک در جهت افقی و قائم یکسان نباشد، معادله تحکیم اندکی دستگاه تغییر مستقیم می‌شود. در این حالت معادله تحکیم را بهصورت زیر می‌توان نوشت:

\[\frac{\partial u}{\partial t} = C_h \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right) + C_v \frac{\partial^2 u}{\partial z^2}. \]

درصورتی که خاک روی یک‌لایه تفوّن‌ناپذیر قرار گرفته باشد، شرایط مرزی و اولیه حاکم بر مسئله بهصورت زیر نوشته می‌شود:
معادله فوق نیز با استفاده از روش جداسازی متغیرها به صورت تحلیلی حل می‌شود [17]. روش جداسازی در بخش قبل به‌طور کامل توضیح داده شد. در این حالت منظور از آپ منفی در هر نقطه از نمونه خاک در هر زمان از رابطه زیر محاسبه می‌شود:

\[
\begin{align*}
 u(r, z, t) & = u(r, z, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} r q \frac{r_d \mu_i(\lambda_n r_d)}{M \lambda_n} \frac{r_d \mu_i(\lambda_n r_d)}{M \lambda_n} \left(\frac{M}{H} - \frac{C_c}{M} \right) \\
 & \times \left[\mu_i(\lambda_n r) \sin \left(\frac{Mz}{H} \right) e^{-\left(\frac{C_c}{M} \right) \frac{M}{H}} \right].
\end{align*}
\]

درجه تحقیم در هر شعاع عمق و در هر زمان برای است با:

\[
\begin{align*}
 u_{r,z} & = 1 - \frac{u}{q} \\
 & = 1 - \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} r \frac{r_d \mu_i(\lambda_n r_d)}{M \lambda_n} \frac{r_d \mu_i(\lambda_n r_d)}{M \lambda_n} \left(\frac{M}{H} - \frac{C_c}{M} \right) \\
 & \times \left[\mu_i(\lambda_n r) \sin \left(\frac{Mz}{H} \right) e^{-\left(\frac{C_c}{M} \right) \frac{M}{H}} \right].
\end{align*}
\]

درجه متوسط تحقیم برای کل رابطه خاک که روی یک‌سرای نفوذ‌ناپذیر قرار دارد از رابطه زیر به دست می‌آید:

\[
\begin{align*}
 U & = 1 - \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\lambda n r_d}{M} \frac{r_d \mu_i(\lambda_n r_d)}{M \lambda_n} \frac{r_d \mu_i(\lambda_n r_d)}{M \lambda_n} \left(\frac{M}{H} - \frac{C_c}{M} \right) \\
 & \times \left[\mu_i(\lambda_n r) \sin \left(\frac{Mz}{H} \right) e^{-\left(\frac{C_c}{M} \right) \frac{M}{H}} \right].
\end{align*}
\]
لازم به توضیح است که روابط نهایی به‌دست‌آمده برای نشست زمین، تعیین روابط (۳۷) و (۴۱)، برای شیوع‌های نزدیک به فر، قابل تعریف نیست. به‌دلیل اینکه توابع بسیار از نوع Y نقطه صفر تعریف نمی‌شوند. این موضوع محدودیت استفاده از معادلات یادشده می‌باشد.

۳- نتایج و بحث

۳-۱- بررسی نتایج عددی و مقایسه با روش ترزاچی

برای بررسی بهتر نتایج، اقدام به انجام آزمون تحقیق یک‌بعدی روی نمودن خاکی به قطر حدوداً ۷۵ میلی‌متر و ارتفاع ۲۰ میلی‌متر گردید. نمودن مورد آزمایش تحت بارگذاری ۱۰ کیلوگرم قرار گرفته و از پلاک پایین زهکشی می‌شود. نتایج آزمون انجام‌شده نشان داد که

$$m_v = \frac{33}{999} \cdot \frac{cm^3}{kg} \cdot 69 \cdot 10^{-6} \cdot \frac{cm}{s}$$

برابر با $k = 1/498 \cdot 10^{-5} \cdot \frac{cm^3}{s}$ به‌دست‌آمده است. برای مقایسه روش شیوع‌های عمودی با روش یک‌بعدی ترزاچی، دو مقدار ۱ و ۱/۵ سانتی‌متر برای r_d در نظر گرفته شد و مقادیر مربوطه وارد رابطه (۳۷) شد و با استفاده از نرم‌افزار برنامه‌نویسی (MATLAB)، تغییرات درصد نشست تحقیقی متوسط نسبت به زمان به دست آمده. برای بررسی بهتر و دقیق‌تر، در شکل زیر نتایج حاصل از حل معادله تحقیق یک‌بعدی ترزاچی و معادله سه‌بعدی تحقیق تحت زهکشی شیوعی و قائم، نشان داده‌شده است.

![شکل ۲: مقایسه روش ترزاچی با روش شیوع‌های عمودی](attachment:image.png)
همان‌گونه که در شکل فوق مشخص است، می‌توان بیان نمود که استفاده از زهکش قائم باعث ایجاد تسکین در روند تحقیم‌های می‌شود. به‌عنوان مثال، زمان رسیدن توقف خاک به 50 درصد نشست تحقیمی با استفاده از روش قرارگیری برای با 240 ثانیه محاسبه می‌شود در حالی که با استفاده از زهکش قائم به شعاع 1 و 1/2 سانتی‌متر، این زمان به ترتیب برای با 3000 و 275 ثانیه محاسبه می‌شود. لازم به توضیح است که اختلاف‌زمانی بین شده اگرچه ناجیز است، اما با توجه داشته که به این اعداد در مقياس زمان‌یابی‌گرایی بسته‌شده است. چنانچه محاسبات ریاضی در این مقاله صورتی انجام گیرد، اختلاف‌زمانی ایجادشده بروز احتمال زهکش‌های قائم، کاملاً محسوس خواهد بود. در روش‌های می‌توان در عمل، تحقیم سه‌بعدی را به می‌دهد. این تحقیق با تکنیک‌های ریاضی حل‌ساده‌ای را به همراه می‌آورد. از انجایی که به ازای یک‌بار مشخص در زمان‌یابی‌گرایی و شرایط می‌توانیم یکسان باشد، می‌توان نتایج زمان‌یابی‌گرایی را توجه به روابط موجود برای،

\[C_v \] به میزان تحلیل داد. در خصوص شرایط سه‌بعدی با استفاده از روابط استخراجشده در این تحقیق با در نظر گرفتن شیعه تأثیر زهکش‌های عمودی، می‌توان نتایج را به شرایط می‌توانیم داد.

۳- مفایسه نتایج حاصله با نتایج تحقیقات گذشته

ازجمله تحقیقات مشابهی که در گذشته روى موضوع تحقیم زمان‌یابی‌گرایی و می‌توان به تحقیق وانگ و زو [19] اشاره نمود که در دانشگاه شانگهای چین انجام‌شده است. در تحقیق یادشده معمولاً دقیقاً نشست زمانی تحقیم برای به‌کار بردن شعاعی و عمودی به‌صورت چندانه موردبررسی قرار گرفته و با ممکن در نظر گرفتن تراکم‌پذیری و نفوذپذیری خاک در طول عمل تحقیم به‌صورت نیمه‌تحلیلی حل‌شده است. شرایط مزی حاکم بر مسلسله‌های این تحقیق وانگ و زو پارامتر

\[r_v \]

به‌عنوان شعاع ستونی معمولی‌شده است. این تحقیق از همان‌گونه شیعه زهکش‌های قائم با آن رفتار می‌شود و مقرار ان برای با 250 متر در نظر گرفته شده است. پارامتر

\[t_v \]

به‌عنوان شعاع تأثیر زهکش معمولی‌شده و مقرار ان برای با 1 متر در نظر گرفته شده است.

مقدار هیدرولوژیکی خاک موردطالعه در جهت افکی، \(k_v \) برای با

\[m_v \]

و ضریب تراکم‌پذیری هجمی خاک، \(k_v \) برای با

\[m_v \]

و ضریب تراکم‌پذیری خاک،

\[k_v \]

ویستگی در جهت افکی، \(k_v \) برای با

\[m_v \]

و ضریب تراکم‌پذیری خاک،

\[k_v \]

ویستگی در جهت افکی، \(k_v \) برای با

\[m_v \]

و ضریب تراکم‌پذیری خاک،

\[k_v \]

ویستگی در جهت افکی، \(k_v \) برای با

\[m_v \]

و ضریب تراکم‌پذیری خاک،

\[k_v \]

ویستگی در جهت افکی، \(k_v \) برای با

\[m_v \]

و ضریب تراکم‌پذیری خاک،

\[k_v \]

ویستگی در جهت افکی، \(k_v \) برای با

\[m_v \]

و ضریب تراکم‌پذیری خاک،

\[k_v \]

ویستگی در جهت افکی، \(k_v \) برای با

\[m_v \]
نتیجه‌گیری

در این تحقیق یک نمونه کلی برای به دست آوردن سرعت زمانی تحقیم تحت جریان هیدرولیک شعاعی و عمودی آب‌اندازه‌شده از طریق مشخص گردید. نتایج تحقیق حاضر که به صورت تحلیلی معادله‌های تحقیم در جریان شعاعی یا بررسی می‌نماید در تئوری با بروز‌های عدیدی به کار گرفته شده در تحقیقات گذشته می‌باشد. به لحاظ ریاضی می‌توان بیان نمود که با توجه به اینکه در معادله (12) جواب بخش شعاعی به صورت بسیار ظاهر می‌شود و این نتایج دارای خواص توسیعی می‌باشند، سرعت زمانی تحقیم در حالتی که جریان سطح به صورت شعاعی و قائم هکشتی می‌شود بیشتر از حالتی است که جریان آب فقط به صورت قائم هکشتی می‌شود. از نظر فیزیکی، ایجاد هکشتی قائم که جریان آب را به صورت شعاعی

شکل ۳: مقایسه نتایج بدست‌آمده از روش وانگ و زو و روش استفاده‌شده در تحقیق حاضر برای درصد متوسط نشست تحقیمی.
زهکشی می‌کنید. باعث تسربی در روند نشست تحقیمی می‌شوند. در بسیاری از طرح‌ها که نیاز به تثبیت خاک ازنظر نشست پیش‌تری باشند، می‌توان این موضوع را مدنظر قرار داد.

مراجع

A 3-D Mathematical Modeling in Solving Analytical Consolidation Equation in a Homogeneous Saturated Soil

Reza Poursaki*, Javad Ahadian† and Mansour Seraj**

*Department of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
**Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

The drainage length can be artificially decreased using vertical drains where need to accelerate in the consolidation settlement, so that the flow can be drained radially and vertically. In this research, the three dimensional consolidation equation with appropriate boundary conditions was used in cylindrical coordinates, and then was solved analytically. After the analytical solution, analysis of the results was done on using MATLAB software. Moreover, the average degree of consolidation versus time was obtained and compared with the results of one-dimensional method. Findings showed that, the analytical method in this research is in accordance with another numerical method in the previous researches.

Keywords: Three-dimensional consolidation, Cylindrical coordinates, Boundary condition, Radial-vertical drainage.

Mathematics Subject Classification (2010): 34BXX, 34B30.