فصل‌های هذلسازی اقتصادی (سال دهم، شماره ۱، پاییز ۱۳۹۵، صفحات ۷۷-۸۸)

جاگزین‌سازی بین سوختی در OECD و اثر آن بر نوسان سهم صادرات نفت خام ایران

تیمور مقدمی، حمید آماده، فریدون برکشی، داریوش واقفی‌نجار

تاریخ دریافت: ۹۴/۱/۱۷ تاریخ پذیرش: ۹۵/۲/۲۰

چکیده

با توجه به اهمیت مسئله جاگزین‌کردن بین سوختی OECD و سپس به این سوال پاسخ داد که آیا این جاگزین‌سازی اثری در نوسانات سهم صادرات نفت خام ایران در بازار OECD دارد؟ برآورد تخمینی دریافت پویای خاطی، سبب پی استیل معادلات سهم سوخت و روش SURE برای بررسی جاگزین‌سازی بین سوختی میان چهار سوخت نفت، گاز، زغال و الکتریسیته در OECD نشان می‌دهد که الکتریسیته و مسی گاز، بیشترین، کلید جاگزین‌سازی را (هم در کوتناوت و هم در بلندمدت) با نفت دارد. همچنین نتایج بررسی اثر این جاگزین‌سازی با استفاده از مدل SURE، نشان می‌دهد که این جاگزین‌سازی در نوسانات سهم صادرات نفت خام ایران به این بازار نیز موجب هستند.

طبقه‌بندی JEL: Q41, Q47, D24, L10

واژگان کلیدی: جایگزین‌سازی، صادرات، نفت، OECD، MSİ، بازار نفت خام ایران

طراح اصلی بهترین روشی برای اثبات این نتایج طراحی می‌شود که با بررسی دکتری داریوش واقفی‌نجار به راهنمایی دکتر تیمور مقدمی در دانشگاه اقتصاددان‌های طراحی می‌شود.

tmohammadi@yahoo.com
amadeh@gmail.com
fbarkeshli@yahoo.com

@ هیچ‌یک از این مقالات توسط مؤسسه مطالعات بنی‌الملک ارزی، پست الکترونیک: dr_vafi@yahoo.ca
فصل‌های هدف‌سازی اقتصادی (سال دهم، شماره 1 دی‌بی‌ای، 1395، پیام 3)

1. مقدمه

امروزه تهیه کالا و خدمات را نیم‌یک‌نقطه که از گونه‌های منفی‌ساز از جمله نفت، گاز، زغالن، نفتی‌سفیدی، باد، آب، زندرمال و... گونه‌های منفی‌ساز انزی‌هستند که یا به طور مستقیم در طبیعت وجود دارند یا طی فردی مثل مشخصه ساخته و بهره برداری می‌شوند. از بین گونه‌های منفی‌ساز، نفت به دلیل ویژگی‌های بی‌نظیری و قابلیت حل آسان از دو دهه قبل مورد توجه کشورها و شرکت‌های تولیدی و تجاری بوده است. در سال 2012 بر اساس آمار (EIA2015) از مجموعه کل انرژی تولیدی جهان به مقدار ۹۱/۳ میلیارد معادل بشکه نفت خام، بیش از ۵۶ درصد (معدل ۳۲ میلیارد بشکه) مربوط به نفت تولید است.

شرایط بازار جهانی نفت و سایر سوخت‌های جایگزین برای برنامه‌ریزی تولید و صادرات

نفت کشور از اهمیت زیادی برخوردار است. بررسی روند صادرات نفت ایران نشان می‌دهد قبل از سال‌های 1994 بیشترین میزان سهم صادرات نفت خام ایران به کشورهای اروپای غربی بوده است. سپس به تدریج بر مقدار صادرات نفت خام ایران به آسیا و عراق افزوده شد. به طوری که تا سال 2012 با افزایش تحریم‌های تیم ایران اسناد به ۸۷ درصد کل صادرات نفت ایران رسید (OPEC, 2015).

اهمیت نفت جایگزین برای نفت و اثر آن بر تولید و صادرات نفت ایران می‌تواند در برنامه‌ریزی تولید و صادرات نفت و دیگر سوخت‌های دارای مرز تولید در آینده کشور سوء مدیریت باشد.

برای دستیابی به این منظور، ابتدا ضمن م روی و وضعیت تولید، مصرف و صادرات و

واردات جهانی نفت در ایران و OECD1، به بررسی جایگزینی بین سوختی در کشورهای OECD و تأثیر آن بر نوسان سهم صادرات نفت ایران به OECD در سیستم معادلات سهم سوخت بر اساس مدل لاجیت خلیج پرداخت. سپس به تیپ نوسان سهم صادرات

1 Geothermal
2 Energy Information Administration
3 Organization of the Petroleum Exporting Countries
4 Organization for Economic Cooperation and Development
جایگزینی سازی بین‌سوختی در OECD و اثر آن بر نوسان سهم صادرات نفت خام ایران

نتایج ایران از شاخص پیثاک سهم بازار MSC به‌ویژه می‌پدایم.

OECV ۲. وضعیت مصرف انرژی در جهان و OECD
روندهای ا-extra OECD سال‌های ۱۹۹۰-۲۰۱۲ در کل جهان و OECD (۱۱ تصویر نمودار) تصویر شده است. این روندهای جهان با سرعت بیشتری در حال افزایش است: در حالی که مصرف انرژی روی داده‌های دارد. رشد مصرف انرژی به دلیل رکود جهانی ۲۰۰۸-۲۰۰۹ و کاهش شدید رشد‌های اقتصادی در جهان (به ویژه OECD) به شدت کاهش یافته (شرکت نفت بیضی ۲۰۱۳).

نمودار ۱. روند مصرف انرژی در جهان و OECD ۱۹۹۰-۲۰۱۲
منبع: BP (۲۰۱۳)

۳. صادرات و واردات جهانی نفت خام
در سال ۲۰۱۲ آمریکا با ۷۵۲ میلیون بشکه نفت خام برگزاری واردکننده نفت در دنیا بوده است. پس از آن چین، زاین و هند به ترتیب با ۵۷۵، ۳۲۵ و ۲۴۵ میلیون بشکه در روز، برگزاری واردکننده نفت خام بوده‌اند. اروپا نیز به طور متوسط در این سال ۹۵۴ میلیون بشکه نفت خام وارد نموده است. درباره فراورده نیز آمریکا و

۱ Market Share Instability ۲ British Petroleum (BP)
فصل‌های هذلسازی اقتصادی (سال دهم، شماره 1، 1395) ۷۰

سرپرستی پیاپی

بازار ۱۳۹۵ شمسی

شماره‌ها: ۴۳۴-۱۳۴۴

نمودار ۲: تولید و صادرات نفت ایران طی سال‌های ۱۳۹۱-۱۳۴۴ (هزار بشکه در روز)

منبع: پویان آماری اولیک در سال‌های موردید

همچنین ایران به مناطقی مانند آسیای ویتنام، آسیای شرقی، آسیای غربی، آفریقا، آمریکای شمالی و اروپا شرکت در سال‌های ۱۳۹۱-۱۳۴۴ صادرات نفت داشته است که روند آن برابر می‌باشد. این موضوع باعث شده است به علت افزایش نیازهای اقتصادی این منطقه، افزایش صادرات نفت ایران از طرف این منطقه روند بیشتری داشته است. بر اساس این نمونه، صادرات نفت ایران به منطقه اروپا، طی این دوره روند
کاهشی دارد؛ در مقایسه، حجم صادرات به آسیا و پاسیفیک (به دلیل رشد زیاد این کشورها، به ویژه چین و هند) افزایش یافته است.

نمودار 3: صادرات نفت خام ایران به مناطق مختلف جهان در سال‌های مختلف (هزار بشکه در روز)

ممنوع: بولتون اوپک در سال‌های مختلف

4. مبانی نظری

مبانی نظری این مقاله شامل دو قسمت است: یک قسمت درباره جایگزینی بین سوختنی است و دیگری جارچوبی که با آن می‌توان اثر این جایگزینی سازی‌ها را بر صادرات نفت خام ایران بررسی کرد. برای اولین بار، U.S. منابع از مدل لاجیت MSI استفاده شده است.

یکی از ابزار تحلیل اثر جایگزینی بین سوختنی استفاده شده است تابع سوم سوخت است که در مطالعات به دو صورت توابع ترانسلوگ و توابع لاجیت انجام شده است. در این مقاله به دلایل زیاد از مدل لاجیت استفاده شد.

مدل لاجیت که اولین بار برای تخمین معادلات سهم سوخت در سال 1984 توسط کانسیدین جهت رفع برخی مشکلات توابع ترانسلوگ معرفی شد از مراحل بیشتری به ویژه در تخمین دقیقتر ضرایب برخورد است. همچنین مطالعات

1 Considine

بر اساس تحقیق کانسیداين (1984) یک مدل تقاضای نهاده لاجیت خطی (تیل) نشان داد که می‌توان با مجموعه‌ای از N سهم هزینه با استفاده از مدل لاجیتیک زیب به سمت آورده:

\[
S_i = \frac{P_i}{C} = \frac{\text{EXP}(\omega_i)}{\sum_{j=1}^{N} \text{EXP}(\omega_j)} \quad \text{for } i = 1, 2, \ldots, N
\]

که برای بیان یک مجموعه N تایی از معادلات سهم هزینه ارائه می‌شود و در آن که برای بیان مجموعه N تایی از معادلات سهم هزینه ارائه می‌شود و در آن

\[
\frac{\partial S_i}{\partial p_{ij}} = X_i = \text{Si} \quad \text{زیرا بر اساس لام شرایط} \quad \text{Si}=\left(\frac{\text{Pi} \times \text{Xi}}{\text{C}}\right)
\]

کل تخصص داده شده به آمین نهاده، تبیز به ترتیب قیمت و مقدار نهاده ام Xi و Pi تابعی از قیمت‌های N نهاده و سطح wi نتایی کل N هزینه کل C تابعی از قیمت‌های N نهاده و سطح wi و سطح می‌باشد.

ستانده Y در شرایط یویا خواهد بود:

\[
w_{it} = \eta_i + \sum_{j=1}^{N} \beta_{ij} \ln P_{it} + g_i \ln Y + \gamma \ln X_{i(t-1)}
\]

که در آن \(\eta_i \) و \(g_i \) و \(\beta_{ij} \) و \(\alpha_i \) و \(\gamma \) پارامترهای تآش.resp. یستند، بنابراین در این مدل تبیین کشش‌های قیمتی، ساده بوده و از پیچیدگی‌های تفسیر غیرضروری می‌رود.

\[\sum_{j=1}^{N} e_{ij} = 0, \quad E_{ij} = E_{kij} = \sigma_{ij} = \sigma_{ij}(\text{Shephard's Lemma})\]

1 Considine & Mount
2 Clifton
3 Giovanni Urga & Chris Walters
4 مدل لاجیت، رونالد تیلی در تفسیر معادلات سهم‌سومیت است. این روش اولین بار توسط کانسیداين در 1984 مطرح شد و به تجربه بیان شده که برای تخمین معادلات سهم سومیت نسبت به روش ترانسلوگ داشت، مورد استفاده محققین بسیار قرار گرفت. همان این روش معنی‌داری داشت: 1. تضمن شرایط شرایط N سهم سومیت (شامل) در مدل لاجیت، باید به‌ویژه ترانسلوگ وجود داشته. 2. تضمنین برگردن از بکرنش

M نهاده کردن (1984) باید بررسی از نهاده از آن مدلین، معادلات کشش‌های نهاده ای با حاصل از مدل لاجیت بر اساس آنها مجموعه N کشش‌های نهاده برای هر نهاده بر پدیده صفر، شده و همچنین متقابلی بودن کشش‌های سهمی مقتفی

5 Shephard's Lemma
پایگاه سازی بین‌سوختی در OECD و اثر آن بر تولید سهم صادرات نفت خام ایران

پس از تنفیذ کانسیستننس (1984) و با توجه به رابطه (2)، فوک، هریک از کشت‌های قیمتی برای سهم‌ها و برای قسمت‌های متفاوت، را می‌توان با استفاده از الگوی شفراد به صورت زیر به دست آورد:

کشت قیمتی و مقاطع برای هریک از سهم‌ها (رابطه (1)) و با چاگفتاری از رابطه (3) خواهد بود:

\[\varepsilon_{ik} = \frac{\partial \ln S_i}{\partial \ln P_k} = \frac{\partial w_i}{\partial \ln P_k} \times \frac{\partial \ln \sum_{j=1}^{N} EXP(w_j)P_k}{\partial \ln P_k} = \beta_{ik} = \sum_{j=1}^{N} S_j \beta_{jk} \]

همچنین بر اساس رابطه \(S_i = (CS_i/PI) \) فوک داروی \(S_i \) در این صورت کشت مستقیم و مقاطع قیمتی در سطح نهاده‌ها را می‌توان با استفاده از الگوی شفراد و کارگیری رابطه (3) به صورت زیر بیان نمود:

\[e_{ii} = \frac{\partial X_i}{\partial P_i} = e_{ii} + S_i - 1 \quad \text{و} \quad e_{ik} = \frac{\partial X_i}{\partial P_k} = e_{ik} + S_k \]

یعنی کشت قیمتی مقاطع برای هرکالا عبارت است از کشت سهمی مقاطع، به علاوه میانگین سهم آن نهاده‌ای که قیمتی تغییر کرده است و در نهایت اگر ضرایب قیمتی معادله (4) به صورت تعیین شود، با توجه به تبدیل کلاپیون از (1995) می‌توان مدل لایت خطران بانشود در (1) را برای چهار سرخ، \(N=4 \) و با تبدیل معادله سهم، به نسبت سهم در این حالات به جای ریز معادله، سهم معادله خواهیم داشت و در شرایط پیوست به صورت

سیستم معادلات سهم سوخت زیر ارائه داده می‌شود:

\[\ln \left(\frac{S_i}{S_4} \right) = \left(\eta_1 - \eta_4 \right) - \left(\beta_{12} S_{2t} + \beta_{13} S_{3t} + \beta_{14} (S_{*1t} + S_{*4t}) \right) \ln \left(\frac{P_2}{P_4} \right) + \left(\beta_{12} - \beta_{24} \right) S_{2t} \ln \left(\frac{P_2}{P_4} \right) + \left(\beta_{13} - \beta_{34} \right) S_{3t} \ln \left(\frac{P_3}{P_4} \right) + \alpha \ln y_t + \gamma \ln \left(\frac{X_i}{X_4} \right)_{t-1} + (\varepsilon_1 - \varepsilon_4) \]

\[\ln \left(\frac{S_2}{S_4} \right) = \left(\eta_2 - \eta_4 \right) - \left(\beta_{21} S_{1t} + \beta_{23} S_{3t} + \beta_{24} (S_{*2t} + S_{*4t}) \right) \ln \left(\frac{P_2}{P_4} \right) + \left(\beta_{12} - \beta_{14} \right) S_{1t} \ln \left(\frac{P_2}{P_4} \right) + \left(\beta_{13} - \beta_{34} \right) S_{3t} \ln \left(\frac{P_3}{P_4} \right) + \alpha \ln y_t + \gamma \ln \left(\frac{X_2}{X_4} \right)_{t-1} + (\varepsilon_2 - \varepsilon_4) \]
فصل‌ی هذلسازی اقتصادی (سال دوم، شماره ۱ بهار ۱۳۹۵)

\[
\ln\left(\frac{S_3}{S_4}\right)_t = (\eta_3 - \eta_4) - (\beta_3^1 S_{1t} + \beta_3^2 S_{2t} + \beta_3^3 (S^*_{3t} + S^*_{4t})) \ln\left(\frac{P_3}{P_4}\right)_t + (\beta_3^1 - \beta_3^3) S_{3t} \ln\left(\frac{P_3}{P_4}\right)_t + (\beta_3^2 - \beta_3^3) S_{2t} \ln\left(\frac{P_3}{P_4}\right)_t + \gamma \ln\left(\frac{X_3}{X_4}\right)_{t-1} + \alpha_3 \ln y_t + (e_3 - e_4)_t
\]

که ضریب ۷ همان نرخ تعیین پرویا است. برای کشش‌های بندهم‌سازی و مقاطع برای تمامی آن‌ها با دست داشتن ضریب تعیین (۷) خواهیم داشت:

\[
e_{ij}^g = e_{ij}^g/(1 - \gamma)
\]

در نهایت با نویسه به رابطه (۴) به طور خلاصه برای کشش چاپگیری خواهیم داشت (کانسیداین، ۱۹۸۴):

\[
s_{ij} = \frac{e_{ij}}{\bar{S}_{ij}} \quad i \neq j
\]

و در زمانی که بیش از دو نهاده (سوخت) وجود داشته باشند به دلیل پیچیدگی رشد در این مقاله به‌طور خلاصه نشان داده شده است که رابطه این دو نهاده در میان می‌توان از کشش چاپگیری موریشیا (۱۹۶۷) به صورت زیر استفاده کرد:

\[
s_{ij} = S_j (\sigma_{ij} - \sigma_{jj}) = e_{ij} - e_{jj}
\]

که این کشش به دلیل بهبود گیبری از نسبت قیمت‌ها نسبت به کشش‌های آن‌آن از دقت پیشتری برخورد است؛ زیرا در صورت تغییر یک قیمت، اثر نسبی قیمت‌ها بر تغییرات سوخت را در نظر می‌گیرد. اما برای بررسی اثر این چاپگیری‌ها بر بازار صادرات نفت ایران در OECD و نیز بررسی این مستند که آیا این بازار از نظر اقتصادی می‌تواند چاپگیری‌های چاپگیری چاپگیری بیشتر یا کمتر باشد یا خیر. از شاخص استفاده MSI

1 برای سنجش ضریب کسانی وان (۱۹۸۴) در تخمین سیستم معادلات ۶ بجای S ۴ از مبانی سهم نهاده‌ها در طول دوره استفاده می‌شود. همچنین دلیل استفاده از وقوع مقادیر نهاده‌ها در سیستم معادلات (۴) بجای وقوع نقاط این است که تخمین صحیح تری از نرخ تعیین پرویا به دست آید زیرا بر اساس هیگن (Hogun, 1989) استفاده از سهم‌های نرخ تعیین را کمتر از حد تخمین سیزن رده است.

می‌کنیم، به عنوان مثال، یک درصد نوسان سهم سوخت‌گذار یا کلیسیتیه چه مقدار
می‌تواند در سهم صادرات نفت ایران تأثیر گذار باشد و این ارگنژاری مثبت است با
منفى. اولین مطالعات مرتب‌باشی بی‌بی‌یک سهم بازار (MSI) را می‌توان در پژوهش‌های
هیمر و پاشینی‌گان (۱۹۷۷) یافت؛ اینسان از رابطه زیر برای پیش‌بینی سهم بازار
استفاده کرده‌اند:

\[
AMSI_{it} = |MSI_{it} - MSI_{it-1}|
\]

که در آن

MSI سهم بازار کالایی در زمان t می‌باشد. رابطه بالا معیار مطلق

یک‌بنایی سهم بازار است. هیمر و پاشینی‌گان (۱۹۷۷) معیار اندازه‌گیری بی‌بی‌یک سهم
بازار را «معیار پویای رقابت» تعریف می‌کنند. شاخص MSI

مطلق بی‌بی‌یک کالایی شرکتی که در زمان t می‌باشد. معیار نسبی اندازه‌گیری بی‌بی‌یک
سهم بازار نیز به صورت زیر تعریف می‌شود:

\[
RMSI_{it} = \frac{|MSI_{it} - MSI_{it-1}|}{MSI_{it-1}}
\]

با محاسبه شاخص MSI بی‌بی‌یک کالایی از رابطه بالا برای صادرات نفت ایران به

OECRD فاصله بین مدل بی‌بی‌یک سهم بازار را برای صادرات نفت ایران به

OECDF صورت زیر بیان کرد:

MSI_{f}(D(qo-Iran), AD(L(S1/S4)), AD(L(S2/S4)), AD(L(S3/S4)), AD(L(S3/S4)), DUM1,...)

که در رابطه (۱۱) قدر مطلق تغییر سهم صادرات نفت ایران در بازار

AD(S1/S4), AD(S2/S4), AD(S3/S4)

در زمان t می‌باشد. هر یک از OECD

برنده مشد. هر چنین تغییرهای

متغییرهای موهومیٔ

DUM2 و DUM1

تفاوت سهم‌های هر یک از سوخت‌ها در معادلات سهم سوخت

5

قند در مطالعه مکرر سهم‌های هر یک از اقتصادی، تحریم یا بی‌بی‌یک‌های ناشی از جنگ

یا انقلاب در بازار نفت است.

1 Hymer S. & Pashigian
2 Absolute Index
3 Dummy Variables
فصل‌های پژوهش‌های داخلی درباره بررسی اثر جایگزینی بین سوخت در بخش‌های اقتصادی کشور مانند صنعت، ساختمان و نیروگاه‌ها با هدف بررسی کاهش‌های قیمتی و مقاطع و همچنین کاهش‌های درآمدها با کاربرد معادلات سهم سوخت صورت گرفته که برای نمونه می‌توان به مطالعه مرزبان و همکاران (1384) با عنوان "بررسی تفاوت‌ها برای انواع سوخت و جانشینی بین آنها در نیروگاه‌های حرارتی" تولید برق کشور (1380-1383) اشاره کرد.

این مطالعه با هدف بررسی جایگزینی کردن انواع سوخت‌های گازرنگ، نفت کوره و گاز طبیعی با یکدیگر در نیروگاه‌های حرارتی تولید بر روی ایران صورت گرفت و در آن از نتایج هزینه کوتنا‌پذیر‌تری هزینه ترانسلوگ استفاده شد. نتایج نشان داد که ضریب بار، یک متغیر اثرگذار بر تفاوت‌های سوخت است و مقدار سهم سوخت‌ها نسبت به تغییر ضریب بار با کاهش می‌باشد. رابطه جایگزینی ضعیفی بین سوخت‌ها وجود دارد و تفاوت‌های انواع سوخت نسبت به تغییر قیمت آنها با کشش است.

همچنین آن‌ها تأثیر کردن یا فرض باید ثابت نسبت به مقياس، تفاوت‌های گازرنگ و نفت کوره نسبت به تغییر سطح تولید، کاملاً با کشش و تفاوت‌های گاز طبیعی، نسبت به تغییر مقدار تولید، بی‌کشش است.

به‌همین‌تر (1383) در پژوهش خود با عنوان "بررسی عوامل مؤثر بر تفاوت‌های انواع انرژی در بخش صنعت استان اصفهان و تخمین کاهش‌های جایگزینی بین آنها" برآورد معادلات سهم سوخت در صنایع اصفهان از مدل لاجیت و محله‌ای استفاده کرد. در مرحله اول، الی مدل نتایج تفاوت‌های انرژی بخش صنعت را با استفاده از روش "حداقل مربعات معقولی" پرآورد می‌کند و توجه می‌گیرد که از این‌جا به‌قاچینی دریابی که، با توجه به مقدار پاسخ‌های تفاوت‌های انرژی برای آن، کاهش صنعت و رابطه مستقیم با تفاوت‌های انرژی بین بخش خود در اثر افزایش جایگزینی با سوخت مشخص می‌شود و روشهای تخمین معادلات به ظاهر غیرمرتب و استفاده از سیستم پایدار مصرف و سهم همان‌انرژی برای تخمین معادلات سهم سوخت، نتیجه می‌گیرد که گاز طبیعی جایگزین مناسب برای فراورده‌های نفی، زغال سنگ و برق می‌باشد که این تناوب جایگزینی دریابه زغال سنگ
جایگزینی سازی بین‌سوختی در OECD و اثر آن بر توزیع سهم صادرات نفت خام ایران

بشرت است. نتایج حاصل از کشش‌های قیمتی متفاوت‌های زغال و برق با کدکی‌گر نشانگر آن است که این انرژی‌ها مکمل یکدیگر هستند.

خیابان و حسنی (2010) در تحقیقی با عنوان "نگاه‌های تخصصی و فنی و کشش جایگزینی عوامل برای 9 زیربخش صنعت (مطالعه طبقه‌بندی بین‌المللی استاندارد صنایع-کد ISIC)" در ایران، ضمن تحلیل وضعیت صنایع و مزور آمار برنامه‌های توسیعی پنج ساله طی دوره 2004-2008، از داده‌های پایل برای تخمین تابع هزینه تعیین‌افته سایهای پیش‌گرفته و هم‌گام با محاسبه کشش‌های جایگزینی نتیجه‌گیری دارد که کشش‌های محاسبه شده، ثابت گرفته و در نتیجه‌گیری نتایج و جانشینی ناکارایی وجود دارد اما با وجود اثبات آزمایش‌های حذف محدود، تغییرات محیطی موجب شده صنایع کارخانه‌های مصرف انرژی خود را نسبت به دو نهاده کار و سرمایه‌افزایش دهد.

کانسیدایین (1984) در مطالعه خود نشان داد مدل لاجیت خلوی با محدودیت‌های خود می‌تواند برای تصمیم‌گیری معاوضه بهم‌هم‌راهی که تأیید گردیده شرایط اقتصاد نوکلاسیک باشد. استفاده از تک‌پروش کانسیدایی با استفاده از پیش‌گرفته کشش‌های خود-قیمتی در کوتاه‌مدت و بلندمدت در تقابل‌های انرژی، نشان دهنده صنعت در ایالات متحده آمریکا، نتیجه‌گیری این مدل نسبت به مدل ترانسلوگ از روش‌های بهتری مانند همسانی، تعریف و تقارن کلی برخوردار است که موجب تبادل نتایج می‌شود. البته نشان داد در زمان نگیری کمیت کمتر از 30 درصد تغییری در همان سال وقوع تغییر می‌کند و 50 درصد تغییر‌های غیردلیلی در سال دوم و این واکنش و فشار این کمتر از چیزی است که پیش‌بینی (1977) در مطالعه خود بیان داشته. محقق مشابهی، پژوهش جرجیچی‌جنس استین باکس (2002) است. البته در مطالعه خود جایگزینی کردن بین‌سوختی را در صنایع کارخانه‌ای انگلیس با کاربرد مدل لاجیت خلوی برای نهاد‌های انرژی به‌طور کلی و نیز برای سوخت‌هایی که فقط در فرانسه گرماش شرکت دارند، به‌طور خاص، محاسبه می‌کنند.

1 Generalized Shadow Cost Function
2 Jevgenijs Steinbuks
فصل‌های هذلسازی اقتصادی (سال دهم، شماره 1 (پاییز 1395)

مطالعه نیمه‌ای (۱۳۹۵) اشاره کرد، بر اساس این مطالعه، رابطه بین شدت تحقیق‌های بیگانه با سهم بازار بخش بیکاری را بیان می‌کند. رابطه معکوس دارد. در بازار ارزی، تحویل سهم سوخت مهم‌ترین نماد تحول تکنولوژی و ظهور ارزی‌های نوپدید است. به تعبیر دیگر، بر اساس رابطه‌های بین این دو متغیر، در اعمال کنوناگون‌های تاثیر می‌پذیرد. برای مثال در پژوهش‌های زمانی، عامل نواورنگی و هزینه‌های تحقیق و توسیع و توسعه کشورها، به طور معمول با تشخیص و حمایت‌های دولتی همراه است، موجب می‌شود سهم بازار به نفع سوخت‌های جدیدتر افزایش یابد.

شایعه‌ای قدر مطلق برای سه‌تایی سهم بازار است و نسبت به ساختار بازاری که شرکت در آن فعالیت می‌کند از عوامل کننواگونی تاثیر می‌پذیرد. برای مثال در پژوهش‌های زمانی، عامل نواورنگی و هزینه‌های تحقیق و توسیع و توسعه که می‌تواند سهم شرکت را در بازار تحت تأثیر قرار داده و عامل بیشتری آن باشد.

سال‌های زمانی: کاتر، آنتونیا، جانسون و لیما، متوبولس و واچارب، رابل و ورسال،

از جمله محققانی هستند که به بررسی این نشان در بی‌ثباتی سهم بازار کلامهای مختلف پرداخته‌اند. برخی از آن‌ها به نشان تغییرات اهمیت داده‌اند و آن را عامل مهمی در بی‌ثباتی سهم بازار شرکت‌ها دانسته‌اند. (برزی به نمونه می‌توان به کاتر و هرندورف در صنایع کارخانجات، گیانجی، یابایانکه‌های ایتالیا، کلی، به تأثیر کوانتوم‌تی‌ز و بلند‌دره‌های تغییرات بر سهم بازار را در صنایع دخانیات، انتونیا، بررسی کردند.

1 Needham, D.
2 Restricted Market Share Instability
3 Sanin M.E., and Zanaj S.
4 Contner U.
5 Resende M., and Lima M.A.M.
6 Matopoulos A, and Valchopoulou M.
7 Ruble R., and Versaevel.
8 Kelly B.
9 Giannetti C.
10 Kelly B.
است؛ لیو و سیوکسکی (اشاره کرد) بخش پیوپوش‌ها، صرف‌های ناشی از مقیاس را در بی‌ثباتی بازار سودآور دانسته‌اند. (مزاکن 1998) بخشی دیگر به نقش سیاست‌های تنظیم بازار در بی‌ثباتی سهم بازار برداخته‌اند. (کنسلمن و همکاران)؛ و بخش دیگر بی‌ثباتی عواملی مثل ساختان قیمت‌بندی و متغیرهای هزینه‌های عملیاتی و شدت سرمایه‌ی بر سهم بازار توجه داشته‌اند (تانگ و همکاران، 2010).

6. روش تحقیق و تفسیر داده‌ها

بر اساس گفتار پیشین، برای تخمین سیستم معادلات (5) از روش (SURE) 1 یا معادلات به ظاهر غیرمرتب استفاده خواهد شد؛ زیرا در این سیستم معادلات سهم‌ها، به ظاهر مستقل از یکدیگر هستند. اما اگر قبلاً مدل غیرتغییرrenal، تغییر‌های بین کالایی دیگر نیز تغییر می‌کند، معادلات رگرسیون به ظاهر غیرمرتب، اولین بار توسط آمریکا Zellner 1962 عرضه شد که شکل تعمیم یافته مدل رگرسیون خطی است و مشکل از چند معادله رگرسیونی است که هریک بی‌ثباتی متغیر وابسته و نیز به طور بالقوه، از مجموعه متغیرهای توضیحی برون‌زا تبعیت می‌کند. هر معادله در سطح خودش، یک رگرسیون خطی تهاجمی است و شاید آن را به طور مستقل تخمین دز. چنین تخمین‌های اگرچه سازگار هستند؛ اما کارایی تخمین‌های SURE را ندارند. زیرا در SURE معادلات وارد می‌شود. نتیجه در دو حالت تخمین‌های حداقل مربعات معادله با تخمین‌های به معادله باREW باید با ANOVA می‌باشد. یکم، زمانی که اجای خطا در معادلات مختلف با SURE است. آن یک مدل رگرسیونی از ارتباط تیپانش و دوم، همگی است که هر معادله مجموعه رگرسیون‌ها را در سمت بایا SURE با OLS راست معادله نیز داشته باشد. در این صورت استفاده از هریک از SURE نیز تفاوتی ندارد.

1 Liu H., and Siokis F.
2 Mazzucato M.
3 Konzelmann S., and et al. 2010
4 Tung S.G., Lin C.Y., and Wang C.Y.
5 Seemingly Unrelated Regression
6 Arnold Zellner
در این مقاله مورد مطالعه مناسب با داده‌های سال‌های 1960-2012 برای همه کشورهای OECD برای مدل سوم سوخت‌ها و موارد واقعی است. داده‌های آماری نیز برای تمام کشورهای OECD مقاله از جمعیتی کشف کننده در مناطق متفاوتی و مناسب با وزن هر منطقه به دست آمده است. همچنین کشورها در OECD مختلف مشخصه هر سال قالب مربوط از مرحله انتقال تا پالایش و حمل توزیع است.

تولید ناخالص داخلی نیز مجموع تولید ناخالص داخلی واقعی کشورهای OECD است. مقدار نقاط برای هر یک از سوخت‌ها نیز بر حسب میلیون تن، معادل نفت خام (MTOE) بیان شده است. آمار مربوط به صادرات و واردات نفت خام بر حسب متوسط میلیون بشکه در روز است. آمار تولید نفت خام ایران نیز متوسط میلیون بشکه در روز می‌باشد.

7. تخمین مدل و تحلیل نتایج

نتیجه تخمین سیستم معادلات پویای (7 و 11) با استفاده از روش SURE و نرم‌افزار Eviews7 در جدول (1) بیان شده است.

جدول 1. تخمین سیستم معادلات سهم سوخت و نوسان سهم صادرات ایران در OECD

<table>
<thead>
<tr>
<th>ضرایب تخمینی از مدل پویای</th>
<th>پارامتر</th>
<th>عنایین</th>
</tr>
</thead>
<tbody>
<tr>
<td>جایی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.477</td>
<td>β*0.12</td>
<td></td>
</tr>
<tr>
<td>0.477</td>
<td>β*0.13</td>
<td></td>
</tr>
<tr>
<td>0.369</td>
<td>β*0.14</td>
<td></td>
</tr>
<tr>
<td>0.24</td>
<td>β*0.24</td>
<td></td>
</tr>
<tr>
<td>0.27</td>
<td>β*0.24</td>
<td></td>
</tr>
<tr>
<td>0.27</td>
<td>β*0.23</td>
<td></td>
</tr>
</tbody>
</table>

1 Million Tons of Oil Equivalent
جدیدترین سازی بین‌سوختی در OECD و اثر آن بر توسان سهم صادرات نفت خام ایران

| ضریب تخمینی از مدل پویای لاگیت | ضریب | معنا
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>η_1</td>
<td>-0.0566</td>
<td></td>
</tr>
<tr>
<td>η_2</td>
<td>0.052</td>
<td></td>
</tr>
<tr>
<td>η_3</td>
<td>0.0632</td>
<td></td>
</tr>
<tr>
<td>η_4</td>
<td>0.0014</td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td>0.0003</td>
<td></td>
</tr>
</tbody>
</table>

نتایج تخمین هرمان مدل MSI با مدل سهم سوخت لاگیت برای ایران (متن و باستنی: توسان سهم صادرات نفت ایران در OECD)

| ضریب تخمینی از مدل پویای لاگیت | ضریب | معنا
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>0.1067</td>
<td></td>
</tr>
<tr>
<td>α_2</td>
<td>0.0545</td>
<td></td>
</tr>
<tr>
<td>α_3</td>
<td>0.0525</td>
<td></td>
</tr>
</tbody>
</table>

| ضریب | معنا
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SE_{reg}</td>
<td>0.029</td>
</tr>
<tr>
<td>R^2_{adj}</td>
<td>0.997</td>
</tr>
<tr>
<td>SE_{reg}</td>
<td>0.027</td>
</tr>
<tr>
<td>R^2_{adj}</td>
<td>0.998</td>
</tr>
<tr>
<td>SE_{reg}</td>
<td>0.073</td>
</tr>
<tr>
<td>R^2_{adj}</td>
<td>0.995</td>
</tr>
<tr>
<td>SE_{reg}</td>
<td>0.076</td>
</tr>
<tr>
<td>R^2_{adj}</td>
<td>0.934</td>
</tr>
</tbody>
</table>
پس از محاسبه ضرایب اصلی (از رابطه $\beta_{ij} = \frac{\beta_{ij}}{S_{ij}}$) می‌توان کشش‌های جایگزینی (جزئی آن و مورشیما) و کشش‌های قائمی و متقاطع تقاضا را محاسبه نمود. جدول 2 مقادیر محاسبه شده برای این کشش‌ها را نشان می‌دهد.

جدول 2: محاسبه کشش‌های جایگزینی (جزئی آن و مورشیما)، مدل پویا

<table>
<thead>
<tr>
<th>کشش‌های مورشیما</th>
<th>کشش‌های آن</th>
<th>کشش‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>σ_{oo}</td>
</tr>
<tr>
<td>0.23</td>
<td>0.098</td>
<td>σ_{og}</td>
</tr>
<tr>
<td>1/441</td>
<td>0.1161</td>
<td>σ_{oe}</td>
</tr>
<tr>
<td>0.258</td>
<td>0.121</td>
<td>σ_{oc}</td>
</tr>
<tr>
<td>0.0296</td>
<td></td>
<td>σ_{go}</td>
</tr>
<tr>
<td>0.292</td>
<td></td>
<td>σ_{gg}</td>
</tr>
<tr>
<td>0.599</td>
<td>0.0739</td>
<td>σ_{ge}</td>
</tr>
<tr>
<td>0.472</td>
<td>0.226</td>
<td>σ_{gc}</td>
</tr>
<tr>
<td>0.417</td>
<td>0.161</td>
<td>σ_{eo}</td>
</tr>
<tr>
<td>0.505</td>
<td>0.242</td>
<td>σ_{eg}</td>
</tr>
<tr>
<td>0</td>
<td>0.194</td>
<td>σ_{ee}</td>
</tr>
<tr>
<td>-0.111</td>
<td>-0.268</td>
<td>σ_{ec}</td>
</tr>
<tr>
<td>0.598</td>
<td>0.148</td>
<td>σ_{co}</td>
</tr>
<tr>
<td>0.246</td>
<td>0.125</td>
<td>σ_{cg}</td>
</tr>
<tr>
<td>0.245</td>
<td>0.137</td>
<td>σ_{ce}</td>
</tr>
<tr>
<td>0</td>
<td>0.329</td>
<td>σ_{cc}</td>
</tr>
</tbody>
</table>

توضیحات:
1. سیم‌های Si به سیم‌های Cu و یا آلیک در وضعیت‌های مختلف و جایگزینی عده‌ای ثابت می‌گردند که در ضرایب تخمینی برای محاسبه کشش‌های سیم‌های مختلف به انتخاب ضرایب تخمینی و تبدیل به اندازه ضریب میانگین سهم‌سازی. این مسئله به دفع معادلی تخمینی برای استفاده
2. (ب) رای محاسبه تخمینی آزمون خواهی داشته $t = \frac{\bar{y}_i - \bar{y}_j}{S_{E_{ij}}}$ که برای ضرایب تبدیل خواهد شد: $t = \frac{\bar{y}_i - \bar{y}_j}{S_{E_{ij}}}$.
3. همان میانگین سهم سوخت آست: $t = \frac{\bar{y}_i - \bar{y}_j}{S_{E_{ij}}}$.
جایگزین سازی بین سوختی در OECD و اثر آن بر تورسان و مهم تجارت نفت خام ایران

جدول ۳. کشتهای خود کمی و مقاطع ناپایدار هر یک از سوخت‌ها

<table>
<thead>
<tr>
<th>کشته‌ها</th>
<th>کانت‌های مدت</th>
<th>بلند مدت</th>
<th>کانت‌های مدت</th>
<th>بلند مدت</th>
</tr>
</thead>
<tbody>
<tr>
<td>ee</td>
<td>۰/۰۶۴۶۰</td>
<td>۰/۰۶۴۶۰</td>
<td>eo</td>
<td>۰/۰۹۴۶۰</td>
</tr>
<tr>
<td>eg</td>
<td>۰/۰۰۰۸۰</td>
<td>۰/۰۰۰۸۰</td>
<td>eg</td>
<td>۰/۰۰۰۸۰</td>
</tr>
<tr>
<td>eec</td>
<td>۰/۰۰۰۸۰۵۷</td>
<td>۰/۰۰۰۸۰۵۷</td>
<td>eoe</td>
<td>۰/۰۰۰۳۴۹</td>
</tr>
<tr>
<td>ec</td>
<td>۰/۰۰۰۷۷۱۲</td>
<td>۰/۰۰۰۷۷۱۲</td>
<td>ec</td>
<td>۰/۰۰۰۴۴۱</td>
</tr>
<tr>
<td>eoo</td>
<td>۰/۰۰۰۲۰۵</td>
<td>۰/۰۰۰۲۰۵</td>
<td>eoo</td>
<td>۰/۰۰۰۲۰۵</td>
</tr>
<tr>
<td>eca</td>
<td>۰/۰۰۰۷۴۳۱</td>
<td>۰/۰۰۰۷۴۳۱</td>
<td>ega</td>
<td>۰/۰۰۰۳۳۴۹</td>
</tr>
<tr>
<td>ecg</td>
<td>۰/۰۰۰۲۷۶۲</td>
<td>۰/۰۰۰۲۷۶۲</td>
<td>ecg</td>
<td>۰/۰۰۰۲۷۶۲</td>
</tr>
<tr>
<td>ecg</td>
<td>۰/۰۰۰۲۳۶۷</td>
<td>۰/۰۰۰۲۳۶۷</td>
<td>egg</td>
<td>۰/۰۰۰۲۳۶۷</td>
</tr>
<tr>
<td>ecg</td>
<td>۰/۰۰۰۲۳۶۷</td>
<td>۰/۰۰۰۲۳۶۷</td>
<td>egg</td>
<td>۰/۰۰۰۲۳۶۷</td>
</tr>
<tr>
<td>ecg</td>
<td>۰/۰۰۰۲۳۶۷</td>
<td>۰/۰۰۰۲۳۶۷</td>
<td>egg</td>
<td>۰/۰۰۰۲۳۶۷</td>
</tr>
</tbody>
</table>

همانطور که از پرآورد مدل لاجیت خطی در جدول (۱) نتیجه می‌شود، همه ضرایب معادلات سهم سوخت (بجز کشش درآمدی در مدل سهم الکتریسیته) معنادار هستند. همچنین از ضرایب مدل OECD صادرات ایران به MSI تولید نفت ایران بقیه ضرایب معنادار هستند.

تفسیر کلی شاخص MRI برای بورس و تقلب نفت است. با توجه به معاندای OLS بالای ضرایب قد درطلب تقلب سهم سوخت‌ها و سایر متغیرهای مهمی فیونا نتیجه گرفت که بقای نفت در بورس صادرات نفت ایران یک بزار بوده است. بنابراین این تحقیق به دنبال پاسخ به بند بخش اساسی است که آیا OECD یا جایگزینی سازی‌ها در تولید نفت ایران به OECD تأثیر در تولید نفت ایران به OECD داشته‌اند. همچنین که از جدول (۱) نتیجه می‌شود، تمامی ضرایب معنادار نفت سهم سوخت‌ها معنادار شدند و اساساً به‌دست معناداری که جایگزینی سازی‌ها بین سوخت‌ها در صادرات نفت ایران در OECD تأثیر داشته است و در بقای صادرات نفت ایران در OECD رقابت بورسی وجود دارد.
تفسیر کشش‌های جایگزینی بین‌سوختی (آلن و موریسیما) در شرایط پیاپی

مقدار کشش‌های جانشینی (آلن و موریسیما) در جدول (2) بیان شده‌اند.

ضریب تعیین مدل پیاپی/۸۹/۸۳ است که با توجه به برگ بودن آن سرعت تعیین زیاد را در مدل نشان می‌دهد. برای تبدیل کشش‌ها از کوتاه به بلندسدن نیز از رابطه (۱۴)

استفاده شده است.

همان طور که از جدول (۲) مشاهده می‌شود کشش جایگزینی نسبت به خود این سوخت (σ_{xy}) در کوتاه‌مدت برای ۱/۳۸ پیش‌بینی می‌شود و بدان معمولاً که به طور مثال اگر قیمت این نهاده یک درصد افزایش (کاهش) پیدا کند، این سوخت به میزان ۵۰/۰ درصد کاهش (افزایش) می‌یابد و جایگزین سوخت‌های دیگر می‌شود. این در حالی است که کشش خودکویی نسبت (۰/۰۰) در میزان ۱/۲۴۵ به دست آمده است (جدول ۳). بدین معنا اگر قیمت نهاده نفت یک درصد تغییر یابد، مقدار مطلق نفاضا برای این نهاده به میزان ۲/۴۵ درصد تغییر خواهد کرد. بنابراین کشش‌های جانشینی آلن از نظر مطلق همواره برزگی از کشش‌های خودکویی و مقاطع هستند؛ زیرا کشش‌های جوزی جایگزینی آلن اثر سه‌اه آن نهاده‌ای را که

قیمت آن تغییر کرد را نیز در خود دارد (کانسیداین ۱۹۸۴).

همچنین نتایج کشش جایگزینی موریسیما نیز در همان جدول (۲) بیان شده است. برخی نتایج با کشش آلن متفاوت و حتی علائم ضربه نیز مهاجر بکدرگه است. برای مثال گزارش یافت (σ_{xy}) و الکتریسمی‌ها با زغال (σ_{zy}) از نظر علائم در هر دو کشش با هم متفاوت هستند. همچنین کشش جایگزینی موریسیما قاد تغییر سهم نسبی تغییر در نهاده‌ها را در تغییر تغییر در قیمت نسبی محاسبه نمی‌کند و (به ویژه زمانی که تعداد نهاده‌ها افزایش یافته‌اند) نسبت به کشش جوزی آلن از دقت بیشتری برخوردار است. بنابراین این اختلاف، طبعی است و مکملی یا جایگزین نمی‌باشد.

برای نسبی از نهاده‌ها با نسبی از قیمت‌ها هوازی بود.

بر اساس کشش‌های جایگزینی موریسیما، به نفست با زغال (σ_{zy}) که مکمل هستند، بقیه سوخت‌ها با یک‌درصدگر جایگزین خواهند شد. نفست و گزار بیشترین شدت جایگزینی را با الکتریسمی‌های دارند؛ اما در زغال، بیشترین شدت
جایگزین سازی به سوخت خام ایران OECD و اثر آن بر توان مصنوعات نفت خام ایران

جایگزینی با گاز است. این در شرایطی است که نفت و گاز در کشور آلن مکمل هستند و نفت بیشترین شدت جایگزینی را با الکتریسیته (محله مورشیما) و لی گاز با زغال دارد. همچنین که باشد. کشور مورشیما به دلیل این که اثر تغییر نسبت قیمت‌ها را در نظر می‌گیرد از دقت بیشتری (به ویژه در سیاست کشاورزی و در شرایطی که تعداد نهاده‌ها افزایش یابد) برخوردار است.

7. نتیجه‌گیری و توصیه‌های سیاستی

اهیمیت بیان‌گرین جایگزین بدون نفت و اثر آن بر تولید و صادرات نفت ایران، مسئله‌ای است که بررسی رونده‌ای و آگاهی از سودمندی‌های آن می‌تواند به مسئولان در برنامه‌ریزی برای تولید و صادرات نفت و دیگر سوخت‌های دارای مزیت تولید در کشور کمک کند.

برای دست‌یابی به این هدف، با به کارگیری سیستم معادلات سهم سوخت‌ها بر اساس مدل لابیش خطی در بزار OECD و تخمین مدل سهم صادرات ایران در این بزار با در نظر گرفتن سهم نسبی هرکه از سوخت‌ها، احتوای حاصل از این جایگزین سازی، بسر صادرات ایران بررسی شد. نتایج نشان داد که همه جایگزین‌های بین سوخت‌های نفت ایران در این منطقه مؤثر بوده‌اند و به همین دلیل پژوهش‌های ضریب معادلات بودن این تأثیرها نشان از پویایی این بزار است. علاوه بر این، بزار صادرات نفت ایران در متغیر عوامل غیر بین‌النهرین، نظیر انقلاب، تحریم جنگ و بحران‌ها و منافع‌های جهانی نیز بوده است و هرکه به سهم خود، سهم ایران در این بزار را تحت تأثیر قرار داده‌اند.

بر اساس نتایج کنش‌کشش جایگزینی مورشیما، بجز دو سوخت نفت با زغال (\(\sigma_{OC}\)) و الکتریسیته با زغال (\(\sigma_{EC}\)) که مکمل هستند، بقیه سوخت‌ها بایکدیگر جایگزین هستند. نفت و گاز بیشترین شدت جایگزینی را با الکتریسیته دارند. اما در زغال بیشترین شدت جایگزینی با گاز است، این در شرایطی است که نفت و گاز در کشور
فصل‌های هدف‌سازی اقتصادی (سال دهم، شماره 1، دی 1395، بی‌پایی‌های 1395)

آ目标 is مکمل همت و نفت بیشترین شدت جایگزینی را با الکتریسیته (مانند مورشیما) و گاز با زغال دارد. همچنین که گفته شد کشش مورشیما با توجه به این که نسبت قیمت‌ها را در نظر می‌گیرد از دقت بیشتری (به ویژه در شرایط که تعداد بخش‌های افزایش یافته بیشتر است) می‌تواند نفت دانست. این نظریه بخشی از OECD می‌باشد، که از این نوین اخلاق و استخراج در بالادستی و روش‌های نوین بازاریابی و فروش و استفاده از ابزارهای مالی جدید در پایین دسته، به ماندن غنی‌گاز ایران به عنوان گرایش‌های سرای جایگزینی در بازار انرژی به ویژه اروپا و پاسیفیک اکتا شود؛ زیرا همچنین که نتایج کشش‌های جاشنسی نشان داد، گاز بیشترین شدت جایگزینی را با الکتریسیته و نفت دارد.

منابع

- ترازنانه وزارت نیرو، ترازنانه هیبریدکوروری، سال‌های مختلف. سایت آمارهای سرمایه زمانی بانک مرکزی.
- بهبهانی فرد، پرور (1383). بررسی عوامل مؤثر بر تقاضای انرژی در بخش صنعت استان اصفهان و تعیین کشش‌های جایگزینی بین آنها و نهمین کنفرانس شیکاگوی توزیع نیروی برق، دانشگاه زنجان.

- Pindyck, R. S. (1979b). The structure of world energy demand, Cambridge, MA: The MIT Press.

